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Figure 1. Congested network links in a dragonfly-based supercomputer simulating an eight-job parallel workload. Left to right: Different network configurations
using two, three, and five inter-group links per router pair respectively. The additional links minimize hot-spots and reduce the overall average network load.

Abstract—The dragonfly topology is a popular choice for
building high-radix, low-diameter, hierarchical networks with
high-bandwidth links. On Cray installations of the dragonfly
network, job placement policies and routing inefficiencies can
lead to significant network congestion for a single job and multi-
job workloads. In this paper, we explore the effects of job
placement, parallel workloads and network configurations on
network health to develop a better understanding of inter-job
interference. We have developed a functional network simulator,
Damselfly, to model the network behavior of Cray Cascade, and
a visual analytics tool, DragonView, to analyze the simulation
output. We simulate several parallel workloads based on five
representative communication patterns on up to 131,072 cores.
Our simulations and visualizations provide unique insight into the
buildup of network congestion and present a trade-off between
deployment dollar costs and performance of the network.

Keywords-dragonfly network; congestion; inter-job interfer-
ence; simulation; visual analytics

I. INTRODUCTION

The increase in on-node flop/s capacity and memory band-
width at a higher rate than the inter-node link bandwidth is
making many large-scale parallel applications communication-
bound, meaning their performance is now limited by the
available network resources. Further, on most supercomputers
the network is shared among all running jobs, which can
result in significant performance degradation as multiple

communication-heavy jobs compete for the same bandwidth.
Taking the specifications of the upcoming DOE CORAL [1],
[2], [3], Trinity [4] and NERSC-8 [5] procurements as an
indication of future trends, this problem will continue to grow
as the flop/s per node will jump significantly with only a
nominal increase in network capacity.

One strategy to address this challenge is to move toward
higher-radix, lower-diameter network topologies such as the
dragonfly. Several of the upcoming DOE procurements (Au-
rora [3] at Argonne, Cori [5] at NERSC and Trinity [4]
at Los Alamos/Sandia) will deploy some variation of the
dragonfly topology [6], [7] with the expectation that such highly
connected network topologies coupled with adaptive routing
will greatly reduce or eliminate the effects of job interference
and network congestion [8], [9], [10], [11], [12]. However,
preliminary experiments on Edison, a Cray XC30 at NERSC,
have shown that for communication-heavy applications, inter-
job interference and thus network congestion remains an
important factor. Consequently, understanding the causes of
congestion and identifying potential ways to mitigate it are
crucial for maintaining a high throughput and predictable
performance on current and future supercomputers.

Understanding inter-job interference and its root causes is a
challenging task. Routing algorithms, job placement policies
and network wiring configurations are some of the key factors



that may cause job interference and contribute to performance
degradation. In this work, we focus on job placements and
network configurations. The former can provide insights that
lead to a comparatively low cost avenue to reduce network
congestion. The latter enables the understanding of factors that
affect small-scale dragonfly installations such as Edison and
future dragonfly-based supercomputers.

Our work focuses on Edison – a 30-cabinet Cray Cascade
(XC30) system [7] installed at NERSC. Edison consists of only
15 groups compared to 241 groups in the full-scale dragonfly
design, and uses only ∼1,400 routers compared to ∼23,000
routers in the full-scale design (see Figure 2). As a result,
only one-third of the inter-group or global ports are populated
with optical links, which results in lower bisection bandwidth
compared to the full system. Since the inter-group optical
links are expensive, understanding how to maximize network
performance on a fixed budget is of significant interest.

In this paper, we explore the effects of job placement, parallel
workloads and network configurations on network health and
congestion to develop a better understanding of inter-job
interference on Edison. Since Edison is a production machine, it
is difficult to collect system-wide network data on it or perform
controlled experiments. Hence, we have extended a functional
network simulator to model the network behavior of the Cray
Cascade architecture. Damselfly provides system-wide and per-
job network hardware counters for multi-job simulations, and
allows us to easily explore different job placements, routing
policies, and even network hardware configurations by adding
and/or removing network links.

We have also developed new visualizations of the dragonfly
topology to provide a more intuitive understanding of and
help in analyzing the resulting simulation data. For our case
studies, we have simulated 44 parallel workloads based on
five representative communication patterns on up to 131,072
cores. We present a detailed analysis of 588 simulations
showing insights into the causes of network congestion provided
by the resulting data and corresponding visualizations. Our
contributions are:

• Damselfly, a model-based network simulator extended to
handle multi-job parallel workloads and per-job network
performance counters;

• An ensemble of 44 workloads and 588 simulations
exploring different job combinations, placements and
network configurations;

• An in-depth analysis of network congestion using both tra-
ditional statistics as well as novel, intuitive visualizations
of the dragonfly topology; and

• Trade-offs between network performance and dollar costs
when adding or removing links from the network.

II. BACKGROUND AND RELATED WORK

The overall performance or system throughput of a super-
computer depends on a variety of factors: one-time decisions
made by the procurement division or the hardware team during
system installation; day-to-day execution policy decisions made
by the system administrators; and the mix of jobs that run

on the system. In this study, we focus on the factors that
specifically affect network health, which directly impacts the
overall performance of the system.

Network topology and link bandwidths: The communication
performance of parallel jobs running on a supercomputer
depends heavily on the interconnection network deployed on the
system, its topology, and the latency and bandwidth of network
links. These decisions are made once during procurement.
Using additional links and/or increasing their bandwidth can
improve the communication performance at a high monetary
cost with possibly diminishing returns.

Routing policy: Another important factor that determines
application and system performance is the routing policy used
for sending messages over the network. Shortest-path static
routing policies can lead to congestion and hot spots on the
network where a few links become the bottleneck. Adaptive
dynamic routing can route messages around hot-spots and avoid
delays by using alternate and/or longer routes.

Job placement policy: This policy determines the resource
allocation of available nodes to new jobs. The Blue Gene
family of supercomputers employs a network isolation policy
and allocates only contiguous partitions that do not share
network links with one another. This policy leads to predictable
performance and faster execution at the cost of longer job queue
wait times and lower system utilization due to fragmentation.
In contrast, supercomputers such as the Cray XT/XE and
XC families typically employ a topology-oblivious resource
allocation policy that allows multiple jobs to share network
links. Topology-oblivious policies often lead to higher system
utilization at the cost of slower execution of individual jobs
due to network interference and thus lower overall system
throughput (number of jobs retired).

Parallel workload or job mix: The effects of routing and
job placement policies on individual job and overall system
performance depend on the system’s parallel workload signa-
ture, i.e., the typical collection of jobs that run on the machine.
If most of the jobs require a small number of nodes and are
not communication-intensive, then inter-job interference and
network congestion are less of a concern. However, even a
few communication-heavy jobs with a somewhat significant
allocation size can impact the performance of other jobs running
alongside. The choice of routing and job placement policies
can either amplify or mitigate such effects.

A. Related Work

Several researchers have investigated the impact of job
placement on performance [9], [10], [13], [14]. Skinner et
al. [11] and Wright et al. [12] noted significant performance
variability due to network contention. Recently, Bhatele et
al. [8] studied the impact of inter-job interference on Cray
torus networks. Several modeling tools and simulators have
been developed to study high-performance networks. Hoefler
et al. [15] developed analytical models for network traffic on
different network topologies. Bhatele et al. [14] used BigSim
to model the PERCS network and study different placement
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Figure 2. Various components and logical units in the Cray Cascade (dragonfly) design: An Aries router has 40 network and 8 processor tiles (left). 96 such
routers form a group (center) and several groups connect together to form the two-level network (right).

and routing policies. SST [16] also supports various network
topologies including the dragonfly network.

Previously, we have shown that a randomized placement
or indirect routing can lead to good performance on the
IBM PERCS machine [14]. We have also studied various
routing choices for different communication patterns and
parallel workloads on the dragonfly topology [17]. We found
that the Universal Globally Adaptive Load-balanced (UGAL)
routing [18] is the best for minimizing congestion on the
dragonfly network. Several aspects that differentiate our work
from previous research are: 1. We use a parallel simulator
that implements an analytical modeling approach to network
congestion, which enables us to perform large-scale simulations
very quickly as compared to detailed discrete-event simulations;
2. We use Damselfly to simulate parallel workloads and record
network traffic at the granularity of individual jobs. This
functionality is not available in other network simulators, to
the best of our knowledge; and 3. Our work also analyzes the
effects of changing the underlying network topology and its
impact on network health.

III. MODELING USING DAMSELFLY

In order to study the effects of job placement, parallel
workloads, and network configurations on network health
and congestion, we need information about the attributes of
each message. These include the message size, its source and
destination router, its routing path and the job to which it
belongs. Since one cannot currently collect such system-wide
network data on Edison and performing controlled experiments
in production is difficult, we have extended a functional network
simulator to model the network behavior of the Cray Cascade
architecture [17]. We first describe the baseline version of
Damselfly and then the enhancements done to the simulator to
enable the studies in this paper.

Given a router connectivity graph and an application com-
munication pattern, the network model in Damselfly performs
an iterative solve to redistribute traffic from congested to less
loaded links. The exact algorithm used for traffic or load
redistribution is determined by the routing policy. In addition
to other routing policies, Damselfly implements the UGAL
routing [18], a variation of which is deployed on Edison.

UGAL routing and its variants try to balance the traffic on
global channels by using dynamic load information available

at the source. Various schemes are used to make up-to-date
information available at the source, such as queue occupancy,
selective virtual-channel discrimination and credit round-trip
latency to sense back-pressure (more details in [6]). In
Damselfly, four routes are chosen for each packet in a message
– up to two direct paths and the remainder indirect. We assume
global knowledge of congestion, which corresponds to UGAL-
G routing, considered an ideal implementation of the UGAL
routing. All experiments in this paper use the UGAL-G routing.

The research studies proposed in this work required several
new features in Damselfly. These features and their implemen-
tations are described below.

Simulation of arbitrary interconnect graph: The previous
version of Damselfly had pre-defined connectivity between
the routers in the network as described in [6]. The inter-
group connections could be distributed only in a round-robin
fashion among the routers in a group, and only one intra-group
connection per router pair was permitted. To provide more
flexibility, the user can now specify an arbitrary interconnection
graph. This allows us to connect the inter-group ports in
arbitrary ways and we can also use more than one link to
connect a router pair. This can be used to increase bandwidth
between different router pairs as done on Edison, for example.

Most of the experiments in the paper use the network
connectivity provided to us by NERSC system administrators
for the Edison installation. The modification to Damselfly
allows us to read in the connectivity file as input. Edison
has 15 groups, each with 96 Aries routers arranged in a two-
dimensional grid of 6× 16 (Figure 2). Each row and column
of this grid is connected in an all-to-all fashion by so-called
green (rows) and black (columns) links. Each router is also
connected to routers in other groups via blue (inter-group)
links. To increase the overall bandwidth, the facility decided
to utilize some of the spare ports to put three black links
per router pair in each column and two blue links per router
pair for inter-group connections. The default configuration we
use in our simulator mimics this setup exactly except for a
small adjustment in the per-link bandwidth. To simplify the
subsequent analysis, we assume a bandwidth of 5.0 GB/s for
links of all colors unlike the 5.25 GB/s for black and green
and 4.75 GB/s for the blue links on Edison.

Link traffic of individual jobs: The second feature added
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Figure 3. Link traffic statistics of green, black and blue links for individual jobs with different communication patterns and core counts (16k, 32k, 64k).

to Damselfly is the ability to record the traffic generated by
each job executing in a parallel workload. For each link on
the network, packets or bytes can now be attributed to specific
jobs. Attributing the traffic on each link to individual jobs can
be useful for studying inter-job interference and identifying
jobs that negatively impact other jobs and as a result, overall
system utilization.

Communication graph and placement of individual jobs:
Finally, Damselfly now includes an easier interface for provid-
ing the communication graph and node placement of individual
jobs executing in a workload. Previously, the graph and
placement information for all jobs was provided in one file
each. Now, users can provide MPI rank-based communication
graphs and placements of individual jobs in per-job input files,
and Damselfly combines all of this information to perform a
full-machine simulation.

For the experiments in this paper, we implemented a job
placement policy that resembles placement scenarios common
on Edison in a steady state (once the machine has been up
and running for several days). Most of the nodes of a job are
located as close together as possible within the same group
or adjacent groups (by logical group ID). However, large jobs
usually contain a number of outliers scattered on the system
depending on which nodes are available.

Since Damselfly models steady state network traffic for ag-
gregated communication graphs as opposed to communication
traces with time stamps, it does not model and predict execution
time. In previous papers [14], [19], [20], we have shown that
average and maximum traffic on network links are reasonably
good predictors of execution time and performance. Hence,
in this paper, we use these network metrics to compare the
predicted performance between different simulations.

IV. SIMULATION SETUP

Our aim is to model parallel workloads that make up the
job mix on Edison and other DOE systems. We use five
communication patterns that are representative of application
codes run at NERSC and other DOE facilities:

2D Stencil (2D): Each MPI process communicates with
four neighbors in a two-dimensional Cartesian grid (64 KB

messages), which is representative of a two-dimensional Jacobi
relaxation problem.
4D Stencil (4D): Each MPI process communicates with
eight neighbors in a four-dimensional Cartesian grid (4 MB
messages). This is representative of the communication in
MILC [21], a Lattice QCD application frequently used on
NERSC machines.
Many-to-many (M2M): Groups of 16, 32 or 64 MPI processes
(depending on job size) participate in all-to-alls over sub-
communicators of MPI_COMM_WORLD (32 KB messages per
process). This is representative of parallel FFTs.
Spread: Each process sends 512 KB messages to randomly
selected neighbors. The number of neighbors is fixed for each
process and varies from 6 to 27. This pattern is used to add
random background noise on the machine.
Unstructured Mesh (UMesh): Each process sends 512 KB
messages to a carefully selected set of 6 to 27 neighbors, which
is representative of an unstructured mesh computation.
We combine these five patterns to create multi-job workloads
with different number of jobs and job sizes: 28 workloads with
four jobs and 16 workloads with eight jobs.

In order to understand how the network behavior of one
job may affect other jobs, we first analyze the behavior of
individual jobs running on a subset of the system. We simulate
each communication pattern or job on 16k, 32k and 64k
cores, which is close to 12.5%, 25% and 50% of Edison.
Figure 3 shows the average and maximum traffic predicted by
Damselfly for the intra-group (green, black) and inter-group
(blue) links in the system. As expected, the average link traffic
increases as job sizes become larger. The 4D Stencil and Spread
communication patterns send significantly higher traffic on the
network compared to others (note the different y-axis ranges
in individual plots).

Comparing between different link types, black links exhibit
lower maximum traffic than blue or green links and are often
not a bottleneck. In general, the maximum traffic through
green or blue links is an indication of network hot-spots. As
we can see, green links have higher maximum traffic than blue
links for 2D Stencil, Many-to-many and UMesh. Blue links
have the highest maximum traffic in 4D Stencil and Spread,



(a) 2D Stencil

(c) Many-to-many

(b) 4D Stencil

(d) Spread

Figure 4. Traffic on blue (radial view) and green (matrix view) links for individual jobs running alone on 64k cores.

which are the communication-heavy patterns. Both green and
blue links are congested for 4D Stencil but blue links are the
obvious bottleneck for Spread. A more detailed analysis of the
individual traffic patterns confirms these conclusions.

Figure 4 shows the network traffic of the first four patterns
simulated on their own on 64k cores of Edison. In each
quadrant, the left column shows a histogram of link traffic
stacked by link color and the color map used. The central radial
view depicts the potential 16 groups (only 15 are actually used),
each consisting on 96 routers arranged in a 6x16 grid. Each
router is colored by the id of the job running on its nodes (grey
if the corresponding nodes are unused and cyan if different
jobs are running on the four nodes of a router). The inter-group
(blue) links are shown as curved connectors between the inner
rims of the groups and colored based on the network traffic
passing through them. The matrices on the right within each
quadrant show the network traffic on the green links. Each row
depicts six 16 × 16 communication matrices for each group
representing six cliques formed by the green all-to-all links.
Black links are not shown because they have significantly less
traffic, as shown in Figure 3.

The color maps in the four quadrants in Figure 4 are not
normalized to a single range in order to emphasize the particular
network traffic behavior of each pattern. Green links are the
primary bottleneck for 2D Stencil (Figure 4(a)) and UMesh
(not shown). 4D Stencil generates a significant amount of traffic
on both blue and green links with blue links exhibiting more

congestion (Figure 4(b)). Many-to-many, on the other hand,
generates more traffic on green links but some congestion can
be seen over the blue links as well (Figure 4(c)). In the case of
Spread, blue links are the clear bottleneck with less pressure
on green links (Figure 4(d)).

V. ANALYZING NETWORK HEALTH AND CONGESTION

In this section, we use detailed simulations to study various
factors that impact network congestion and overall network
health. In particular, we focus on job placements, job interfer-
ence in parallel workloads and network wiring configurations.

A. Job Placements

The policy used for assigning available nodes to eligible jobs
in the queue can impact the performance of individual jobs and
the overall system throughput. Resource managers typically
allocate nodes without regard to their relative location in the
network topology, which can significantly hurt performance
depending on the network. On torus networks, having a compact
allocation minimizes interference with other jobs. On dragonfly
systems, distributing nodes of one job over multiple groups can
help randomize traffic and better exploit a larger number of
inter-group links [14], [17]. However, interference from other
jobs precludes this from being the best policy universally.

Figure 5 compares the network traffic generated by simu-
lating two different placements of the same 4D Stencil job
running alone on 32k cores of Edison. The job in the left figure,



Figure 5. Job placement affects the traffic on blue and green links for a simulation of 4D Stencil running on 32k cores. On the left, the job is scattered
which leads to lower maximum traffic (191 MB) but higher average traffic per link (55.5 MB) in comparison to the job on the right which is more compact
(maximum traffic: 236 MB, average traffic: 51.4 MB). Note that only links with traffic above a certain threshold are shown.

Spread 2D 4D 4D M2M M2M UMesh UMeshWD 1
16k 16k 16k 16k 16k 16k 16k 16k

0 1 2 3 4 5 6 7

Figure 6. Both figures show the traffic attributed to the same communication pattern: 4D Stencil on 16k cores (Job 2 on the left, Job 3 on the right) in an
8-job workload (WD 1). Job 2 is scattered on eight groups and shares its groups primarily with Job 5 (Many-to-many), which is not communication-heavy. Job
3 (right) is more compact and occupies an entire group (13) and shares other groups with Jobs 2, 6 and 7. The maximum traffic is higher for Job 3 by 8% (on
green links), while both jobs have similar average traffic. Note that only links with traffic above a certain threshold are shown.

which features a more scattered node placement, uses more
blue links (1589 versus 1226, see numbers under the Filtering
section on the top left of each figure) and has lower maximum
traffic across all the links. However, the average traffic on blue
links is lower for the job on the right – the compact placement
balances intra-group (green) and inter-group (blue) link traffic.

To analyze the effect of job placement when other jobs
are running alongside a communication pattern, we consider
scenarios in which two jobs in a workload have the same
communication pattern and use the same number of nodes.
The only difference is that the two jobs are placed differently
relative to other jobs. One scenario, depicted in Figure 6, is
based on workload WD 1 and features two 4D Stencil jobs
(Job 2 and 3). Network traffic due to Job 2 and Job 3 is shown
in the left and right figure, respectively. Job 2 nodes are spread
among eight groups, though most of the nodes are in groups
10 and 11. Job 2 primarily shares network links with Job 5,
which is not communication-heavy. On the other hand, the
placement of Job 3 is more compact, occupying all of group 13
and parts of groups 12 and 14. It shares links with Job 2 which
is communication-heavy. This forces Job 3 to use the direct

green and black links connecting its nodes, and thus results
in it exhibiting an 8% higher maximum traffic compared to
Job 2. In contrast, Job 2 is able to use indirect paths through
sparingly used links to route its traffic.

Spread 2D 2D 4D

4D M2M UMesh UMesh
WD 2

16k 16k 16k 16k
0 1 2 3

4 5 6 7

Figure 7. Traffic on green links attributed to Job 6 (left) and Job 7 (right) in
WD 2. Both jobs represent UMesh running on 16k cores. Job 6 shares group 5
with a communication-heavy Job 4 (4D Stencil), which in turn leads to higher
congestion (maximum traffic: 119.5 MB for Job 6 versus 72.4 MB for Job 7).

A similar pattern emerges for green links in the second
scenario for WD 2 with two UMesh jobs (6 and 7, see Figure 7).
The main difference is that Job 6 shares its groups with Job



4D M2M Spread UMeshWD 3
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Figure 8. When Job 0 (4D Stencil) is run in a workload (WD 3) along side other jobs (right), the number of links with traffic above a certain threshold
decreases and overall maximum traffic on blue links increases (231 MB) as opposed to when it is run individually (191 MB, left). In the parallel workload run,
Job 0’s traffic is confined to fewer blue links in order to share bandwidth with other jobs.

4 (4D Stencil), which leads to hot-spots on the green links in
group 5. The difference in maximum traffic between Jobs 6
and 7 is significant (119.5 MB versus 72.4 MB).

These studies suggest that in many cases, the job placement
policy has a significant impact on routing of messages on
the network. The important lessons we learn from these
experiments are: 1) While compact placement can help reduce
average traffic by a small margin, it constrains the routing to
fewer groups. Hence, it may lead to network congestion and
hot-spots. 2) When co-located with other jobs, it is advisable to
scatter jobs with heavy-communication away from one another.

B. Inter-job Interference

An interesting observation that is apparent only in the
DragonView visualization is that adaptive routing appears
to redistribute the traffic of each job to provide a fair share of
bandwidth to other jobs. In order to compare the network traffic
generated by a job running with and without other jobs in a
parallel workload, we simulate each workload in two settings.
In the first case, we run all jobs in the workload together. In
the other setting, we run each job in the workload by itself
but using the same placement as in the workload. Since the
simulator outputs the link traffic for each job separately, we can
compare the average and maximum traffic that a job generates
in the parallel workload versus its individual execution.

Figure 8 shows the blue link traffic for 4D Stencil (Job 0)
when run individually and in WD 3 with other jobs (we only
show links with traffic above a certain threshold). When Job
0 runs individually on the machine (left figure), it uses more
blue links between several groups to route its messages and
thus increases its effective bandwidth. However, in a parallel
workload setting, the inter-group and intra-group links are
shared between multiple jobs. This results in the traffic of
individual jobs being confined to fewer blue links, especially

to links that directly connect routers allocated to the job. The
reduction in available blue links per job increases the congestion
on these links, as can be seen in Figure 8 (right). However,
this allows other jobs to use the other less utilized blue links.

This phenomenon of traffic redistribution and increase in
maximum traffic attributed to an individual job in a workload
is highly dependent on the job mix. In Figure 9, the same
job (Spread) observes higher or lower congestion depending
on whether there are other communication-heavy jobs running
along side it. WD 4 has 4D Stencil running on 64k cores which
is communication-heavy (middle figure). In contrast, WD 5
has Many-to-many running on 64k cores which does not send
nearly as much traffic (right figure). As a result, the maximum
traffic on blue links originating from Spread (Job 0) is much
higher in the middle figure (WD 4) as compared to the figure
on the right (WD 5).

Figure 10 shows a similar effect in the green link traffic of
UMesh running in two different workloads – WD 6 and WD 5.
The largest job in WD 6 and WD 5 is 4D Stencil (64k cores)
and Many-to-many (64k cores) respectively. Since the largest
job in WD 6 is communication-heavy, it has a higher impact
on Job 1 (UMesh). This leads to a higher maximum traffic on
the green links (88 MB versus 58 MB).

From these results and other simulation experiments not
presented here, we conclude that communication-heavy jobs
in a workload can impact the traffic distribution of other jobs
significantly. Due to the adaptive nature of routing on Edison,
presence of communication-heavy jobs forces other jobs to
restrict their traffic to fewer links. This can result in higher
maximum traffic for those jobs and impact their performance.
At the same time, this suggests that if nodes assigned to jobs are
not arbitrarily spread throughout the system, adaptive routing
limits the impact of individual jobs to the groups they are
placed on by the scheduler.



Spread 2D UMesh 4DWD 4
16k 16k 32k 64k
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Spread UMesh 2D M2MWD 5 0 1 2 3

Figure 9. Maximum traffic on blue links attributed to Job 0 (Spread) increases when it runs in a workload (WD 4) alongside other jobs (middle) versus when
run individually (left). However, if other jobs are not communication-intensive, the effect on a particular job might be minimal (Job 0, WD 5, right figure).

Spread UMesh 2D

4D
WD 6

16k 16k 32k
0 1 2

3

Spread UMesh 2D

M2M

0 1 2

3
WD 5

Figure 10. Max. traffic on green links for Job 1 (UMesh) is higher when
situated near a communication-heavy job (4D Stencil) in WD 6 (left) than
when situated near a communication-light job (Many-to-many) in WD5 (right).

C. Network Wiring Configurations

Finally, we analyze the effects of changing the network
wiring configuration on congestion and traffic. In the current
configuration on Edison (referred to as the baseline), there is
one green link per router pair, three black links per router pair
and two blue links per router pair. All green and black ports
on each Aries router are used. However, six out of ten blue
ports are unused and can be connected using more cables to
add additional inter-group or global bandwidth to the system.

Before we analyze the results of removing or adding links,
we calculate the monetary cost of network cables used in
Edison. Figure 11 shows the dollar cost per Gbps of a copper
and optical cable based on current market rates [22]. Copper
cables are used for the shorter intra-group black links, while
optical cables are used for the longer inter-group blue links on
Edison. Using regression, we obtain cost functions in terms of
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Figure 11. Dollar cost of copper and optical network cables as a function of
the cable length in meters.

the cable length, x, as follows:

$copper(x) = 0.0288× x2 + 0.123× x+ 1.172 (1)

$optical(x) = 0.0002× x2 + 0.1× x+ 6.995 (2)

To estimate the average length of cables, we make reasonable
assumptions about the machine room set up for a 15-group or
30-cabinet dragonfly. We assume that the cabinets are arranged
on the machine floor in five rows of six cabinets each. Three
pairs of cabinets in each row form three groups. Each cabinet
pair is connected via black (copper) cables, while all groups
are connected in an all-to-all fashion via blue (optical) cables.
Based on these assumptions, we derive the average length of
a copper cable to be ∼3 meters and that of an optical cable
to be ∼11 meters. Substituting these lengths in Equations 1
and 2, the cost of a 5 GB/s copper cable is $72 and that of a
5 GB/s optical cable is $325 approximately.

With the knowledge that there are three black links per
router pair and only four out of ten blue link ports on each
router are used, we set up some experiments to model various
potential modifications to Edison’s baseline configuration. The
backplane on each cabinet provides the green links, and thus
we have not modified the configuration of green links. In our
analysis so far, we have observed that the maximum traffic on



����

����

����

��

����

����

���� ���� ���� ���� �� �����
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
�

��
��
��
�
��
��
��
��
��
��
��

������������������������������������������������������

���������������������

���
������

���
������

���

����

��

����

����

����

����

��

�� ���� �� ���� ���
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
�

��
��
��
�
��
��
��
��
��
��
��

������������������������������������������������������

��������������������

���
������

���
������

���

Figure 12. Scatter plots comparing the average and maximum traffic in the baseline configuration with the new configurations. If the ratio is greater than one,
it reflects that the new configuration had less congestion. All 44 workloads in each of the five configurations are shown on each plot (each color/symbol
represents one network wiring configuration.)

black links is 5 to 20% lower than on green links. We thus
conducted five experiments centered on removing black links
and/or adding blue links:

Remove 1 black link per router pair (–1K): Tests if the
number of black cables on Edison is unwarranted and the
potential impact of removing one out of three black links per
router pair. Cost: −$259,200 (potential saving!).

Remove 1 black link and add 1 blue link per router
pair (–1K+1B): Trades intra-group bandwidth for inter-group
bandwidth at a modest cost. Cost: +$208,800.

Add 1 blue link per router pair (+1B): Increasing the inter-
group bandwidth allows us to explore whether this could
mitigate the congestion on global links. Cost: +$468,000.

Remove 1 black link and add 3 blue links per router pair (–
1K+3B): Significant change of balance in favor of inter-group
bandwidth at a substantial cost. Cost: +$1.15 million.

Add 3 blue links per router pair (+3B): Adding three
additional blue links per router pair uses all ten blue link ports
and creates a configuration closest to a full-scale dragonfly
design. Cost: +$1.4 million.

For experiments in this section, we ran all 44 workloads
in each of the five network configurations (220 simulations
in total). For each workload, we calculate the average and
maximum traffic on each link type (green, black, blue) in the
system, as shown in Figure 12. Since we did not modify any
green link connections, the change in green link traffic is small
and hence, we do not show that data. Each plot shows the
ratio of traffic (average and maximum) of the baseline Edison
configuration to that of a new configuration. If the ratio is
greater than one, it means that the new configuration had a
smaller value for the average or maximum than the baseline
and hence is a better configuration in terms of performance.
x = 1 and y = 1 dotted lines in red act as guides to show the
good configurations. If a point is in the upper right quadrant
formed by these dotted red lines, it is a better performing
configuration than the baseline.

Figure 12 (left) shows that when we remove black cables (–
1K, –1K+1B, –1K+3B), as expected, the average and maximum

traffic over black links increase significantly. Interestingly, this
also impacts the traffic on blue links in the –1K configuration
possibly due to an increased use of certain blue links more
than others. This is the only case for blue links where a new
configuration performs worse than the baseline in terms of
maximum traffic. In terms of the maximum traffic on black and
blue links, the –1K configuration is worse than the baseline by
5 to 20% depending on the workload. However, it represents a
saving of more than a quarter million dollars. This is a trade-off
that the procurement division has to consider based on prior
knowledge of the job mix on a future system.

As we only added blue links and never removed any, all
new configurations perform better than the baseline with the
exception of –1K (Figure 12, right). Even –1K performs better
than the baseline in terms of average traffic (note that the x-axis
in the right plot starts at a ratio of 1.0). Adding blue links
on the system (+1B, +3B) reduces the average and maximum
traffic over blue links significantly (up to 1.9 times in some
cases). Figure 1 (baseline, +1B, +3B respectively) shows this
significant reduction in the number of hot-spots as we add blue
links on the network. However, this comes with a hefty price
tag – adding one blue link per router pair costs nearly half a
million dollars for a 33% reduction in maximum traffic and 10
to 30% reduction in average traffic. A good comprise might
be removing a black link and adding a blue link if that does
not impact performance significantly.

In order to analyze the overall impact of these network wiring
changes, for each simulation, we pick the link color that has
the highest maximum traffic and use the average and maximum
values for that link type to plot its data point in Figure 13.
A significant number of the +1B and +3B simulations are
better than the baseline (above the y = 1 line). However, this
plot shows that procurement decisions need to consider the
tradeoffs between performance and dollar costs carefully with
respect to the expected workloads on the system.

VI. CONCLUSION

Procurement, installation and operation of supercomputers
at leadership computing facilities is expensive in terms of
time and money. It is important to understand and evaluate
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Figure 13. Plot comparing the overall traffic behavior in the baseline
configuration with the new configurations.

various factors that can impact overall system utilization
and performance. In this paper, we focused on analyzing
network health and congestion as communication is a common
performance bottleneck. Using the network configuration of
a production supercomputer (Edison) as a baseline and five
communication patterns, we studied inter-job interference as
well as different network wiring configurations.

Based on our experiments, we conclude that in the default
configuration, black links are usually not contended for.
Depending upon the application pattern, the bottleneck is
either on inter-group (blue) or intra-group (green) links. When
multiple jobs execute simultaneously in a parallel workload,
the communication of each job gets restricted to fewer links to
provide a fair share of bandwidth to other jobs. This leads to
higher bandwidth availability on other links that can be used
by other jobs. Finally, we presented experiments that change
the number of network cables (black and blue) on a dragonfly-
based system. Removing one of the three black links per router
pair has a small negative impact on the overall congestion
in the network but leads to significant monetary savings. On
the other hand, adding a blue link and removing a black link
per router pair can mitigate hot-spots on inter-group links but
requires an additional investment.

Insights presented in this paper, especially when coupled
with the monetary costs of configuration changes can inform
future purchases and potential upgrades. We have presented a
simulation tool called Damselfly and a corresponding visual
analytics system called DragonView that can be useful in
performing such what-if analyses for current and future HPC
systems. These tools can be used by machine architects, system
administrators and end users to understand application, network
and/or overall system performance.
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